Design & Development of e-TurboTM for SUV and Light Truck Applications

S. M. Shahed
Chris Middlemass
Craig Balis
Garrett Engine Boosting Systems

Diesel Engine Emissions Reduction Conference

August, 2003

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Presentation includes gasoline and diesel engine data and analysis
It also includes e-Charger and e-Turbo results

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

e-Turbo™: Electrically-Assisted Turbocharger

Three Levels of System Benefits

- Performance Eliminate Turbolag
- Aggressive Engine Downsizing
- Air Management System
 Synergy with EGR, Fuel
 Injection, Aftertreatment,
 Vehicle Power Demands

M/G - Supplier Developed 12 V DC Input 2 kW Induction Motor/Generator Controller - Supplier Developed

Problem Statement for EBS

Performance Benefits – Transient Torque

Example of Benefits - Engine Test Results

Diesel Engine Turbocharging & Downsizing

Effect of Downsizing on Fuel Consumption

10-30% Downsizing6-17% Fuel Economy Improvement

Honeywell

Gasoline Engine Downsizing & Turbocharging

Fuel Economy MY 1992-93

Honeywell

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Critical "Go/No-Go" Technical Feasibility Criteria

- High-speed motor/controller system to provide up to 1.4kW mechanical power at speeds up to 175kRPM total system efficiency > 70%.
- Turbocharger bearing system to carry the extra mass and length while still retaining acceptable shaft rotor-dynamic behavior up to 225kRPM.
- Turbocharger and motor cooling system to protect the motor from the extreme turbocharger thermal environment as well as from self-heating.
- Compressor aerodynamics to deliver the extra boost without suffering from surge ("stall") during the transient.

Designs Successfully Establish Feasibility

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Modeling for EBS

EBS system analysis, specification and optimization

EBS control strategies development

EBS matching for specific customer application

EBS System Analysis

High level to low level specification

System Model Schematic

Engine mean value model (diesel and gasoline)

- Thermodynamics/mechanical model of turbocharged engine
- Validated against steady state and transient engine data

System Model: Matlab/Simulink Implementation

Summary of Main Modeling Assumptions

Summary of Main Modeling Assumptions

During transient simulation:

Goal: Reach & Maintain Boost Pressure Set Value

Throttle (if applicable) Control:

Fast opening at PPS step (instantaneous 100 % DC command)

WG/VNT Control:

Open at part load (0% DC command)

Fast closing at PPS step (instantaneous 100 % DC command)

Kept closed if electric motor activated, regulation mode

afterward

Electric Motor Control:

Fast starting at PPS step (instantaneous 100 % DC command) Regulation mode afterward

Boost Pressure Set Value:

If EBS is activated, desired boost pressure set to maximum full load boost

PPS-Pedal Position Sensor WG for Gasoline and VNT for Diesel

Summary of Main Modeling Assumptions

Steady-State Model Validation

- 1600 kg vehicle 2.0L engine (e-Turbo ON)
 Acceleration in 4th goar from 1000 RRM
- Acceleration in 4th gear from 1000 RPM

model

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Sensitivity Analysis Example: Displacement

- Fixed RPM ramp after load step (400 engine RPM/s)
- Electric motor mechanical power: 1250 W
- Relative value compared to transient w/o EBS
- Diesel Engine Modeling % increase in torque in ~ 1 sec

Sensitivity Analysis Example: Power

- Fixed RPM ramp after load step (400 engine RPM/s)
- Relative value compared to transient w/o EBS
- Diesel Engine Modeling % increase in torque in ~ 1 sec

Engine Displacement [L] Logic for using speed ramp

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Key Technical Challenges and Targets (2.0L)

- Maintain baseline turbocharger speed = 225kRPM
 - Challenge for rotor bearing subsystem to carry motor
 - Extra length of shaft
 - Overhung weight of motor
 - Challenge for motor mechanical stress
 - Durability at high speed
- Motor performance
 - Acceptable performance on 12V network and < 2kW electric input
 - Torque and mechanical power necessary for boost benefit
 - Efficiency to minimize electric input power requirement
- Compressor aerodynamics to deliver full benefits of motor boost
 - Good efficiency at low flow, low pressure ratio
 - Good range to avoid surge during overboost
- Temperature capability and cooling: motor < 180C
- Protection of motor at severe "off" conditions (e.g. soakback)
 - Unconstrained duty cycle operation at typical operating conditions
 - Partial duty cycle operation at worst-case operating conditions
 - 850C turbine inlet
 - 110C cooling water
 - 150C oil temperature

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Solutions Require Integrated Approach

e-Turbo Design Parameters	Turbocharger Size	Motor Mechanical Speed Limi	Compressor Range/Surge	Motor Torque	Rotor Diameter	Bearing Type	Rotordynamic Stability	Shaft Motion	Bearing Length	Bearing Diameter	Rotor/Stator Air Gap	Motor Length	Oil System	Cooling System	Motor Efficiency	Motor Power	Stator Diameter	Compressor Packaging	Motor Motoring Speed Limit	Turbine Packaging
Turbocharger Size					•		,		_	·			_			·	·			
Motor Mechanical Speed Limit																				
Compressor Range/Surge																				
Motor Torque																				
Rotor Diameter																				
Bearing Type																				
Rotordynamic Stability																				
Shaft Motion																				
Bearing Length																				
Bearing Diameter																				
Rotor/Stator Air Gap																				
Motor Length																				
Oil System																				
Cooling System																				
Motor Efficiency																				
Motor Power																				
Stator Diameter																				
Compressor Packaging																			igsqcup	
Motor Motoring Speed Limit																				
Turbine Packaging																				

Rotor Bearing Subsystem

Turbocharger Speed

Cooling Subsystem

- Preliminary System Benefits Quantified & Configuration Identified
- "Go/No-Go" Technical Feasibility Established
- System Modeling Tools for EBS have been Developed
- Sensitivity Analysis has been Performed to Set Development Targets
- Key Technical Targets and Challenges have been Defined
- Feasible Technical Solutions have been Identified
- Conclusions and Next Steps

Conclusions and Next Steps

Conclusions

- System models have been developed, validated, and used to set development targets
- Testing and simulation has validated the potential for engine downsizing using EBS
- Key technical challenges have been identified and solutions have been found: rotor bearing subsystem, cooling system, motor, aerodynamics
- Next Steps
- Develop next-generation prototype encompassing latest technical solutions and performance targets
- Perform engine and vehicle testing to validate performance and downsizing potential
- Assess total installed system cost and packaging
- Scale up to SUV Size Engine